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Abstract. Systems with long-range interactions can reach a Quasi Stationary State (QSS) as a result of
a violent collisionless relaxation. If the system mixes well (ergodicity), the QSS can be predicted by the
statistical theory of Lynden-Bell (1967) based on the Vlasov equation. When the initial condition takes
only two values, the Lynden-Bell distribution is similar to the Fermi-Dirac statistics. Such distributions
have recently been observed in direct numerical simulations of the HMF model (Antoniazzi et al. 2006). In
this paper, we determine the caloric curve corresponding to the Lynden-Bell statistics in relation with the
HMF model and analyze the dynamical and thermodynamical stability of spatially homogeneous solutions
by using two general criteria previously introduced in the literature. We express the critical energy and
the critical temperature as a function of a degeneracy parameter fixed by the initial condition. Below these
critical values, the homogeneous Lynden-Bell distribution is not a maximum entropy state but an unstable
saddle point. Known stability criteria corresponding to the Maxwellian distribution and the water-bag
distribution are recovered as particular limits of our study. In addition, we find a critical point below
which the homogeneous Lynden-Bell distribution is always stable. We apply these results to the situation
considered in Antoniazzi et al. For a given energy, we find a critical initial magnetization above which the
homogeneous Lynden-Bell distribution ceases to be a maximum entropy state. For an energy U = 0.69,
this transition occurs above an initial magnetization Mx = 0.897. In that case, the system should reach an
inhomogeneous Lynden-Bell distribution (most mixed) or an incompletely mixed state (possibly fitted by
a Tsallis distribution). Thus, our theoretical study proves that the dynamics is different for small and large
initial magnetizations, in agreement with numerical results of Pluchino et al. (2004). This new dynamical
phase transition may reconcile the two communities by showing that they study different regimes.

PACS. 05.20.-y Classical statistical mechanics – 05.45.-a Nonlinear dynamics and chaos

1 Introduction

The dynamics and thermodynamics of systems with long-
range interactions is a topic of active research [1]. Ex-
amples include self-gravitating systems, two-dimensional
vortices, neutral and non-neutral plasmas, chemotaxis of
bacterial populations, just to mention a few. In addition to
these physical systems, a toy model called the Hamiltonian
Mean Field (HMF) model is widely studied [2–21] because
it displays many features of more realistic systems with
long-range interactions, like gravity, while being amenable
to a simpler mathematical treatment [12].

The HMF model is known to display two successive
types of relaxation, like for stellar systems and two di-
mensional vortices [22,23]. The first stage of the dynam-
ics is a violent collisionless relaxation leading to a QSS
after a few dynamical times. This QSS is in general differ-
ent from the Boltzmann distribution. The second stage is
a slow “collisional” relaxation (due to granularities and
finite N effects) leading to the Boltzmann distribution
which is the statistical equilibrium state of the system.

a e-mail: chavanis@irsamc.ups-tlse.fr

The “collisional” relaxation time increases algebraically
with the number of particles so that the QSS has a very
long lifetime which becomes infinite in a proper thermo-
dynamic limit N → +∞.

The nature of the QSS has created an intense de-
bate in the statistical mechanics community. Two different
approaches have been developed. Some authors [6,8,15]
inspired by the work of Tsallis [24] have proposed to
interprete these QSS in terms of a non-extensive ther-
modynamics based on the so-called q-entropy which is
a generalization of the Boltzmann entropy. Other au-
thors [9,12,25,26] inspired by the work of Lynden-
Bell [22,27] in astrophysics, have proposed to interprete
these QSS in terms of a statistical mechanics of the Vlasov
equation called the theory of violent relaxation1. The idea

1 This theory is relatively well-known in astrophysics and 2D
turbulence [22,27,28] but it took some time to diffuse in the
statistical mechanics community despite several efforts of the
author to publicize it [22,25,29,30]. In particular, the possibil-
ity to apply the Lynden-Bell theory to the HMF model (but
also the limitations of its application) was mentioned in several
papers [12,25,31].
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of Lynden-Bell is to determine the most probable state of
the system resulting from phase mixing compatible with
all the constraints imposed by the Vlasov dynamics. This
assumes that the system mixes well so that a hypothesis of
ergodicity is made. If the initial distribution takes only two
values, Lynden-Bell predicts at meta-equilibrium a coarse-
grained distribution similar to the Fermi-Dirac statistics
in quantum mechanics [27,28,32]. In a recent paper, An-
toniazzi et al. [26] have performed direct numerical simu-
lations of the HMF model and found situations in which
the Lynden-Bell distribution provides a good description
of the QSS without ad hoc fitting parameter. These nu-
merical results are a good motivation to investigate these
distributions in more detail, as done in this paper.

In Section 2, we briefly recall the Lynden-Bell theory of
violent relaxation with notations appropriate to the HMF
model. A more thorough description of this theory can
be found in the classical paper [27] and in [28,30,31].
In Section 3, we determine the equation of state p(ρ)
associated with the Lynden-Bell distribution f(θ, v). We
consider two particular limits: the dilute limit where the
Lynden-Bell distribution becomes similar to the Maxwell-
Boltzmann distribution and the completely degenerate
limit where the Lynden-Bell distribution becomes a step
function (water-bag) similar to the Fermi distribution in
quantum mechanics. In Section 4, we determine the caloric
curve β(E) corresponding to the Lynden-Bell statistics
in relation with the HMF model. We restrict ourselves
to spatially homogeneous distributions. In Section 5, we
analyze the dynamical and thermodynamical stability of
these homogeneous solutions by using two general crite-
ria previously introduced in the literature: one is based
on the distribution function of the system [9] and the
other on the velocity of sound c2

s = p′(ρ) in the corre-
sponding barotropic gas [12]. These criteria are equiva-
lent. We express the critical energy and the critical tem-
perature as a function of a degeneracy parameter µ fixed
by the initial condition. The known stability criteria cor-
responding to the Maxwell distribution and the water-
bag distribution [9,12] are recovered as particular cases of
our study since these distributions are two limits of the
Lynden-Bell distribution. For E < Ec(µ) or T < Tc(µ)
the homogeneous Lynden-Bell distribution is not a max-
imum entropy state. Therefore, it is not expected to be
achieved as a result of violent relaxation. In that case,
the system may reach an inhomogeneous Lynden-Bell dis-
tribution (if it mixes well), or another distribution (if it
does not mix well). A critical point µ∗ = 0.68786... is
found below which the homogeneous phase is always sta-
ble whatever the value of energy and temperature. In
Section 6, we apply our results to the situation consid-
ered in Antoniazzi et al. [26]. For a given energy, we find
a critical initial magnetization above which the homoge-
neous Lynden-Bell distribution ceases to be a maximum
entropy state and becomes a saddle point. For an energy
U = 0.69, this transition occurs above an initial magne-
tization Mx = 0.897. For Mx > 0.897, the system should
reach an inhomogeneous Lynden-Bell distribution (most
mixed state) or an incompletely mixed state (possibly spa-

tially homogeneous). Thus, our theoretical study proves
that the dynamics is radically different for small and large
initial magnetizations. This tends to corroborate the claim
of Pulchino et al. [8] who made a similar observation on
the basis of numerical simulations. In the Conclusion, we
stress the limitations of the Lynden-Bell theory and the
possibility that the QSS can be described by other types
of distributions when the system does not mix well (in-
complete violent relaxation). Indeed, the Vlasov equation
admits an infinite number of steady states and the sys-
tem can be trapped in one of them during the collisionless
dynamics [25]. The Tsallis distributions (corresponding to
stellar polytropes in astrophysics) are particular station-
ary solutions of the Vlasov equation which can sometimes
provide a good fit of the QSS in case of incomplete relax-
ation [6]. However, there is no fundamental reason why
these distributions should always (universally) be selected
by the dynamics and, indeed, many other distributions
can emerge in case of incomplete relaxation, depending
on the initial conditions, on the value of the control pa-
rameters, and on the route to equilibrium [25]. The Tsallis
distributions form just a one-parameter family of steady
states of the Vlasov equation [33] and there is no theo-
retical justification of using them unless one invokes their
simplicity and popularity. Similarly, stellar polytropes in
astrophysics represent famous stationary solutions of the
Vlasov-Poisson system that can provide simple mathemat-
ical models of galaxies or convenient fits of astrophysical
systems in certain cases, but other distributions can also
be considered [34]. In fact, real galaxies are not described
by polytropic (or Tsallis) distributions [25,34,35].

2 Theory of violent relaxation for the HMF
model

The HMF model is a system of N particles moving on
a circle and interacting via a cosine binary potential,
e.g. [5,12]. The dynamics of these particles is governed
by the Hamilton equations

dθi

dt
=

∂H

∂vi
,

dvi

dt
= −∂H

∂θi
,

H =
1
2

N∑
i=1

v2
i − k

4π

∑
i�=j

cos(θi − θj). (1)

This system has an unusual thermodynamic limit defined
by N → +∞ with ε = 8πE/kM2 and η = kM/4πT fixed
(here M = Nm is the total mass and we have taken
m = 1). We can rescale the parameters of the problem
so that the coupling constant scales like k ∼ 1/N while
E ∼ N and T ∼ 1 [23]. For N → +∞ in this proper ther-
modynamic limit, the evolution of the distribution func-
tion (DF) is governed by the Vlasov equation [9,12,23]:

∂f

∂t
+ v

∂f

∂θ
− ∂Φ

∂θ

∂f

∂v
= 0, (2)

Φ(θ, t) = − k

2π

∫ 2π

0

cos(θ − θ′)ρ(θ′, t)dθ′. (3)
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Starting from an unstable initial DF f0(θ, v), the Vlasov
equation coupled to the meanfield potential (3) gener-
ates a complicated mixing process at the end of which
the coarse-grained DF f(θ, v, t) achieves a quasi-stationary
state fQSS(θ, v). If the system mixes well2, the QSS is de-
scribed by the Lynden-Bell distribution [22,25,27]. If the
initial DF takes only two values f0 = η0 and f = 0, the
QSS predicted by Lynden-Bell is obtained by maximizing
the mixing entropy [30]:

SLB = −
∫ {

f

η0
ln

f

η0
+

(
1 − f

η0

)
ln

(
1 − f

η0

)}
dθdv,

(4)

at fixed mass

M =
∫

ρdθ, (5)

and energy

E =
1
2

∫
fv2dθdv +

1
2

∫
ρΦdθ, (6)

where ρ =
∫

fdv is the spatial density. We thus have to
solve the optimization problem

Max{S[f ] | E[f ] = E, M [f ] = M}. (7)

Writing the first order variations as

δS − βδE − αδM = 0 (8)

where β = 1/T and α are Lagrange multipliers, one ob-
tains the Lynden-Bell distribution function

f =
η0

1 + λeβ( v2
2 +Φ(θ))

, (9)

where λ = eα > 0 plays the role of a fugacity. Morpholog-
ically, this distribution function is similar to the Fermi-
Dirac statistics [27,28,32] so that we shall find many
analogies with quantum mechanics.

The Lynden-Bell functional (4) is an entropy because
it is proportional to the logarithm of the disorder, where
the disorder is equal to the number of microstates con-
sistent with a given macrostate. Indeed, the Lynden-Bell
entropy is obtained from a combinatorial analysis [27,31].
Therefore, its maximization at fixed mass and energy de-
termines the most probable macrostate, i.e. the one that

2 Lynden-Bell [27] introduces the notion of microstates
corresponding to the finely striated structure of the DF
and macrostates corresponding to the smoothed-out (coarse-
grained) DF. Using the standard postulate of statistical me-
chanics, he assumes that all the accessible microstates (with
the right value of the integral constraints) are equiprobable.
Therefore, if the system “mixes well”, it will be found at meta-
equilibrium in the macrostate which is represented by the max-
imal number of microstates. This most probable (most mixed)
macrostate is obtained by maximizing the Lynden-Bell mixing
entropy under all the constraints of the Vlasov equation [31].

is the most represented at the microscopic (fine-grained)
scale. In this sense, the optimization problem (7) is a con-
dition of thermodynamical stability for the collisionless re-
laxation. Alternatively, the Lynden-Bell functional (4) can
also be interpreted as a particular H-function in the sense
of Tremaine et al. [36]. Indeed, it is of the form

S = −
∫

C(f)dθdv, (10)

where C is convex. In that context, the optimization prob-
lem (7) is a condition of formal nonlinear dynamical sta-
bility with respect to the Vlasov equation [9,12,36–38].
Therefore, the maximization of S at fixed E and M guar-
antees that the statistical equilibrium macrostate is sta-
ble with respect to the perturbation on the microscopic
scale (thermodynamical stability) and that the coarse-
grained DF f is stable for the Vlasov equation with re-
spect to macroscopic perturbations (nonlinear dynamical
stability).

We emphasize that it is only when the initial DF takes
two values η0 and 0 that the Lynden-Bell entropy can
be expressed in terms of the coarse-grained DF f as in
equation (4). In general, the Lynden-Bell entropy is a
functional of the probability distribution of phase levels
ρ(θ, v, η) of the form:

SLB[ρ] = −
∫

ρ ln ρ dθdvdη, (11)

and the coarse-grained DF is given by f =∫
ρηdη [25,27,28,31]. The general Lynden-Bell dis-

tribution is expressed as a superposition of Fermi-Dirac
distributions of the form

f =
∫

χ(η)ηe−η(βε+α)dη∫
χ(η)e−η(βε+α)dη

, (12)

where we have noted ε = v2/2 + Φ(θ) the energy per
particle. This is similar to a sort of superstatistics [31]
where the function χ(η) is determined indirectly by the
initial condition. Therefore, the expression (4) of the col-
lisionless entropy is not universal; it is valid only in the
two-levels approximation. We note also that the expres-
sion of the collisionless entropy given by [14] is not cor-
rect. These authors do not introduce the notion of coarse-
graining and phase mixing, nor the local distribution of
phase levels ρ(θ, v, η), which is capital in the theory of
violent relaxation to describe the QSS [27]. The correct
form of entropy for the violent relaxation process (based
on the Vlasov equation) is the Lynden-Bell entropy (11)
as claimed in [25].

It should be stressed that the theory of violent re-
laxation is valid for many systems with long-range in-
teractions described by the Vlasov equation, not only
for the HMF model [23]. Historically, this theory was
first introduced in astrophysics for collisionless stellar sys-
tems [27]. The calculation of self-gravitating Fermi-Dirac
spheres corresponding to the Lynden-Bell distribution was
performed in [32] and the caloric curve β(E) was ob-
tained as a function of a degeneracy parameter µ. An



490 The European Physical Journal B

equivalent theory of violent relaxation was developed in
two-dimensional turbulence described by the 2D Euler
equation to account for the structure and robustness of
large-scale vortices such as Jupiter’s great red spot [39,40].
The analogy between 2D vortices and stellar systems was
discussed in [22,28,29]. Many numerical simulations have
been performed in the two domains to test the successes
and the failures of the Lynden-Bell prediction (see [25]
for some references). The limitations of the Lynden-Bell
theory will be discussed in the Conclusion. In the follow-
ing, we shall assume that the QSS is described by the
Lynden-Bell distribution (statistical equilibrium state of
the Vlasov equation) and we use a presentation similar to
that developed in the gravitational context [32].

3 Properties of the Lynden-Bell distribution

In this section, we discuss some properties of the
Lynden-Bell distribution (9) and consider two limit forms
of this distribution: the Maxwell-Boltzmann distribution
obtained in the non-degenerate limit and the Fermi distri-
bution (water-bag) obtained in the completely degenerate
limit.

3.1 The equation of state

To any distribution function f = f(ε) depending only on
the energy ε = v2/2+Φ(θ), one can associate a correspond-
ing barotropic equation of state p(ρ) [12]. The density and
the pressure are defined by

ρ =
∫ +∞

−∞
fdv, (13)

p =
∫ +∞

−∞
fv2dv. (14)

Let us determine the equation of state associated with
the Lynden-Bell distribution (9). Substituting for f from
equation (9) to equations (13, 14), introducing the nota-
tion Λ(θ) = λeβΦ(θ), and performing the change of vari-
ables x = βv2/2, we obtain

ρ =
(

2
β

)1/2

η0I−1/2(Λ), (15)

p =
(

2
β

)3/2

η0I1/2(Λ), (16)

where we have defined the Fermi integrals

In(t) =
∫ +∞

0

xn

1 + tex
dx. (17)

By eliminating Λ between equations (15) and (16), we see
that the equation of state is barotropic, i.e. the pressure
is a function p(ρ) of the density. It is equivalent to the
equation of state of an ideal Fermi gas in one dimension.

3.2 The dilute limit (Maxwell-Boltzmann distribution)

In the limit Λ → +∞, the Lynden-Bell distribution re-
duces to the Maxwell-Boltzmann distribution

f � η0

λ
e−β( v2

2 +Φ(θ)). (18)

Since f � η0, this corresponds to a dilute limit (or to a
non degenerate limit if we use the terminology of quan-
tum mechanics). In this limit, the Lynden-Bell entropy (4)
takes a form similar to the Boltzmann entropy

SLB � −
∫

f

η0
ln

f

η0
dθdv. (19)

The corresponding equation of state is that of an isother-
mal gas

p = ρT. (20)

This result can be obtained directly from equa-
tions (15, 16) by using the asymptotic expression of the
Fermi-Dirac integrals for t → +∞:

In(t) ∼ Γ (n + 1)
t

, (n > −1). (21)

3.3 The degenerate limit (water-bag distribution)

In the limit Λ → 0, the Lynden-Bell distribution (9) re-
duces to the Heaviside function

f =

{
η0 (v < vF ),
0 (v ≥ vF ), (22)

where

vF (θ) =
√
−(2/β) lnΛ(θ), (23)

is a maximum velocity. The distribution (22) is often
called the water-bag distribution. It is also similar to the
Fermi distribution in quantum mechanics and vF is similar
to the Fermi velocity. Thus, the limit Λ → 0 corresponds
to a completely degenerate limit in the quantum mechan-
ics terminology.

Using equations (13, 14), the density is given by ρ =
2η0vF and the pressure by p = (2/3)η0v

3
F . Eliminating vF

between these two expressions, we find that the equation
of state is

p =
1

12η2
0

ρ3. (24)

This is similar to the equation of state of a polytrope
p = Kρ1+1/n with an index n = 1/2 and a polytropic
constant K = 1/(12η2

0). Polytropic distributions (related
to Tsallis distributions) have been studied in [12] in rela-
tion with the HMF model. The equation of state (24) can
also be obtained directly from equations (15, 16) by using
the asymptotic expression of the Fermi-Dirac integrals for
t → 0:

In(t) ∼ (− ln t)n+1

n + 1
, (n > −1). (25)
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Fig. 1. Inverse temperature η as a function of the fugacity Λ.

4 The caloric curve

From now on, we restrict ourselves to spatially homoge-
neous systems (Φ = 0) so that the Lynden-Bell distribu-
tion becomes

f =
η0

1 + λeβ v2
2

· (26)

In this section, we shall determine the relation between
the temperature T and the energy E. This defines the
caloric curve T (E). Note that the temperature T is a
Lagrange multiplier associated with the conservation of
energy in the variational problem (8). It also has the in-
terpretation of a kinetic temperature in the Fermi-Dirac
distribution (9).

It is useful to introduce dimensionless quantities as
in [12]. We define the dimensionless inverse temperature
by

η =
kM

4πT
. (27)

We also introduce the degeneracy parameter

µ = η0

(
2πk

M

)1/2

. (28)

These notations are similar to those used in the astrophys-
ical context [32]. Using equation (15) and ρ = M/(2π) for
a homogeneous system, we find that the parameter Λ (fu-
gacity) is related to the temperature and to the degeneracy
parameter by

η = µ2I−1/2(Λ)2. (29)

The curve η(Λ) is decreasing. It behaves as η ∼ −4µ2 ln Λ
for Λ → 0 and as η ∼ πµ2/Λ2 for Λ → +∞ (see Fig. 1).

For a homogeneous system, the energy is simply the
kinetic energy

E =
1
2

∫
fv2dvdθ. (30)

0 1 2 3 4 5
Λ

0

2

4

6

8

10

12

µ2 ε

Fig. 2. Energy ε as a function of the fugacity Λ.

In terms of the pressure (14), this can be written

E = πp. (31)

Introducing the dimensionless energy [12]:

ε =
8πE

kM2
, (32)

and using equation (16), we get

ε =
2µ

η3/2
I1/2(Λ). (33)

Using equation (29), the foregoing equation can be rewrit-
ten

ε =
2
µ2

I1/2(Λ)
I−1/2(Λ)3

. (34)

The function ε(Λ) increases (see Fig. 2). It starts from
ε(0) = 1/(6µ2) and increases like ε(Λ) ∼ Λ2/(πµ2) for
Λ → +∞. Therefore,

ε ≥ εmin =
1

6µ2
. (35)

This minimum energy is similar to the ground state of a
one dimensional Fermi gas. In terms of dimensional vari-
ables it is given by

Emin =
M3

96π2η2
0

. (36)

The caloric curve β(E), or equivalently η(ε), is obtained by
eliminating Λ between equations (29) and (34). We note
that the relation between η/µ2 and εµ2 is independent on
the degeneracy parameter µ. For Λ → +∞, we recover the
relation

η =
1
ε
, (ε → +∞), (37)
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Fig. 3. Caloric curve corresponding to the spatially homoge-
neous Lynden-Bell distribution.

valid for a classical isothermal gas described by the
Maxwell-Boltzmann distribution (18) [12]. In terms of di-
mensional variables, the relation (37) can be written

E =
1
2
MT, (E → +∞). (38)

To investigate the behaviour of the caloric curve close to
the ground state, we use the Sommerfeld expansion of the
Fermi integrals for t → 0:

I1/2(t) =
2
3
(− ln t)3/2

(
1 +

π2

8
(− ln t)−2 + ...

)
, (39)

I−1/2(t) = 2(− ln t)1/2

(
1 − π2

24
(− ln t)−2 + ...

)
. (40)

Combining these results with equations (29–34), we obtain

η =
(

2
3

)1/2

πµ(ε − εmin)−1/2, (ε → εmin). (41)

In terms of dimensional variables, this relation can be
written

E = Emin

[
1 +

π2

36

(
MT

Emin

)2

+ ...

]
. (42)

We note that the energy does not vanish for T = 0. This
is similar to the effect of a quantum pressure in quantum
mechanics, i.e. the distribution function (26) is not a Dirac
peak Mδ(v) for T = 0.

The caloric curve η(ε) is represented in Figure 3. It is
parameterized by Λ. We note that the dilute limit Λ →
+∞ corresponds to ε → +∞ and the degenerate limit
Λ → 0 corresponds to ε → εmin.

5 Stability of the homogeneous phase

We have seen that the optimization problem (7) provides a
condition of thermodynamical stability (in Lynden-Bell’s
sense) and a condition of nonlinear dynamical stability
with respect to the Vlasov equation. We thus have to select
the maximum of S at fixed E, M . Indeed, a saddle point
of S is unstable and cannot be obtained as a result of
a violent relaxation. It can be shown that, for the HMF
model, the optimization problem (7) is equivalent to the
optimization problem

Min{F [f ] = E[f ] − TS[f ] | M [f ] = M}, (43)

where F can be interpreted as a free energy. The crite-
rion (7) can be viewed as a criterion of microcanonical
stability and the criterion (43) as a criterion of canonical
stability. For the HMF model, the statistical ensembles
(microcanonical and canonical) are equivalent so that all
the stable solutions can be constructed from the simpler
optimization problem (43); no stable solution is forgotten
if we solve (43) instead of (7). Now, the optimization prob-
lem (43) has been studied in [9,12] for general functionals
of the form (10) and a simple stability criterion has been
obtained in the case where the steady state is spatially ho-
mogeneous. The stability criterion can be expressed either
in terms of the distribution function [9] or in terms of the
velocity of sound in the corresponding barotropic gas [12].
In this section, we apply these criteria to the Lynden-Bell
distribution (26).

5.1 Criterion based on the velocity of sound

It is shown in [12] that the stability criterion (43) for a
spatially homogeneous solution of the Vlasov equation can
be put in the form of a condition on the velocity of sound
c2
s = p′(ρ) in the corresponding barotropic gas. A spa-

tially homogeneous distribution is stable with respect to
the Vlasov equation (in the above sense) if, and only, if

c2
s ≥ kM

4π
. (44)

This stability criterion exploits the subtle correspondence
between a kinetic system described by a DF f = f(ε)
and a barotropic gas with an equation of state p(ρ). This
correspondence is related to the Antonov first law in as-
trophysics (see [12,38] for details).

Let us now apply this criterion to the Lynden-Bell dis-
tribution. From equations (15, 16), we get

p′(ρ) =
2
β

I ′1/2(Λ)

I ′−1/2(Λ)
. (45)

Now, using the identity

I ′n(t) = −n

t
In−1(t), (n > 0) (46)

we obtain

c2
s =

1
Λβ

I−1/2(Λ)
|I ′−1/2(Λ)| . (47)
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Fig. 4. Graphical construction determining the critical value
of the fugacity Λc below which the homogeneous Lynden-Bell
distribution is not a maximum entropy state anymore. For µ >
µc there is only one intersection.

In terms of the dimensionless parameters, the stability
criterion (44) can be written

η
Λ|I ′−1/2(Λ)|
I−1/2(Λ)

≤ 1, (48)

where Λ is given by

I−1/2(Λ) =
√

η

µ
, (49)

according to equation (29). Combining equations (48, 49),
we can rewrite the stability criterion in the form

φ(Λ) ≡ I−1/2(Λ)Λ|I ′−1/2(Λ)| ≤ 1
µ2

. (50)

The function φ(Λ) starts from φ(0) = 2. It first increases
like φ(Λ) = 2+(π2/6)(− lnΛ)−2 for Λ → 0, reaches a max-
imum at (Λ∗ = 0.024, φ∗ = 2.1135) and then decreases
like φ(Λ) ∼ π/Λ2 for Λ → +∞ (see Figs. 4, 5). Therefore,
there exists a critical point in the problem. If

µ ≤ µ∗ ≡ 1√
φ∗

= 0.68786, (51)

the homogeneous system is stable for any temperature and
any energy. In terms of dimensional quantities, this corre-
sponds to

η0 ≤ µ∗

(
M

2πk

)1/2

. (52)

Alternatively, for µ > µ∗ the homogeneous Lynden-Bell
distribution is not always a maximum entropy state.

For µ > µc, where

µc =
1√
2

= 0.70710, (53)
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Λc

(2)
Λc

(1)

Fig. 5. Graphical construction determining the critical val-
ues of the fugacity Λc at which the homogeneous Lynden-
Bell distribution ceases to be a maximum entropy state. For
µ∗ < µ < µc there are two intersections. The homogeneous

distribution is stable (entropy maximum) for Λ < Λ
(1)
c and

Λ > Λ
(2)
c .

the equation φ(Λ) = 1/µ2 has only one solution denoted
Λc (see Fig. 4). The condition of stability of the homo-
geneous phase corresponds to Λ > Λc. In terms of the
temperature (29) or the energy (34), the condition of sta-
bility of the homogeneous phase can be written

η ≤ ηc(µ), ε ≥ εc(µ), (54)

where the critical temperature and the critical energy are
defined by the parametric equations

ΛcI−1/2(Λc)|I ′−1/2(Λc)| =
1
µ2

, (55)

ηc =
I−1/2(Λc)

Λc|I ′−1/2(Λc)| , (56)

εc =
2Λc|I ′−1/2(Λc)|

I−1/2(Λc)2
I1/2(Λc), (57)

where we recall that

I−1/2(t) =
∫ +∞

0

1√
x(1 + tex)

dx, (58)

I ′−1/2(t) = −
∫ +∞

0

ex

√
x(1 + tex)2

dx, (59)

I1/2(t) =
∫ +∞

0

√
x

1 + tex
dx. (60)

For µ∗ < µ < µc, the equation φ(Λ) = 1/µ2 has two
solutions denoted Λ

(1)
c and Λ

(2)
c (see Fig. 5). The homo-

geneous phase is stable for Λ < Λ
(1)
c and for Λ > Λ

(2)
c . In
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Fig. 6. Stability diagram of the homogeneous phase in the
(µ, η) plane.
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Fig. 7. Stability diagram of the homogeneous phase in the
(µ, ε) plane.

terms of the temperature, the condition of stability of the
homogeneous distribution can be written

η ≤ η(2)
c (µ) or η ≥ η(1)

c (µ), (61)

where η
(1)
c (µ) and η

(2)
c (µ) are given by equation (56) with

Λ
(1)
c and Λ

(2)
c respectively. In terms of the energy, the con-

dition of stability of the homogeneous distribution can be
written

ε ≥ ε(2)c (µ) or εmin(µ) ≤ ε ≤ ε(1)c (µ), (62)

where ε
(1)
c (µ) and ε

(2)
c (µ) are given by equation (56) with

Λ
(1)
c and Λ

(2)
c respectively.

The stability diagram of the homogeneous Lynden-Bell
distribution (26) is plotted in Figures 6, 7 in the (µ, η)
plane and in the (µ, ε) plane respectively. The representa-
tive curve ηc(µ) or εc(µ) marks the separation between the
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ε
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η

1µ=4 0.8 µ* 0.6

Fig. 8. Caloric curve (29)–(34) corresponding to the homoge-
neous Lynden-Bell distribution for different values of the de-
generacy parameter µ. We have indicated the point (εc, ηc) at
which the series of equilibria becomes unstable. These points
are related to each other by the dashed line (εc(µ) − ηc(µ))
parameterized by µ. It is obtained from equations (56, 57). For
µ > µc there is only one intersection between the caloric curve
and the dashed line. For µ∗ < µ < µc there are two intersec-
tions (see Fig. 9). For µ < µ∗ there is no intersection and the
homogeneous phase is always stable.
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Fig. 9. Enlargement of the previous diagram to show the par-
ticularity of the interval µ∗ < µ < µc. When µ lies in this
interval (specifically we have taken µ = 0.695) there exists two
zones of stability in the series of equilibria separated by a zone
of instability.

stable (maximum entropy states) and the unstable (sad-
dles point of entropy) regions. We have also plotted the
minimum accessible energy εmin(µ). In Figures 8 and 9,
we have represented the caloric curve η(ε) for different val-
ues of the degeneracy parameter and we have indicated
the point at which the series of equilibria becomes unsta-
ble (for sufficiently small values of ε or sufficiently large
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values of η). Here, the term “unstable” means that the
homogeneous Lynden-Bell distribution is not a maximum
entropy state, i.e. (i) it is not the most mixed state (ii) it is
dynamically unstable with respect to the Vlasov equation.
As a result, it should not be reached as a result of violent
relaxation. One possibility is that the system converges to
the spatially inhomogeneous Lynden-Bell distribution (9)
with Φ 
= 0 which is the maximum entropy state (most
mixed) in that case (see Sect. 6). Another possibility, al-
ways to consider, is that the system does not converge
towards the maximum entropy state, i.e. the relaxation is
incomplete (see Sect. 6 and the Conclusion).

5.2 Limit cases

In the non-degenerate limit Λc → +∞, using the asymp-
totic expansion (21), we find that

ηc → 1, εc → 1, µ ∼ Λc/
√

π. (63)

These results are valid for µ → +∞. In terms of dimen-
sional variables, the condition of stability can be rewritten

T ≥ kM

4π
≡ Tc, E ≥ kM2

8π
≡ Ec. (64)

This returns the well-known nonlinear dynamical stability
criterion (with respect to the Vlasov equation) of a ho-
mogeneous system with Maxwellian distribution function
(see, e.g., [9,12]). Indeed, for the equation of state (20), the
velocity of sound is c2

s = T and the stability criterion (44)
directly leads to equation (64). This also coincides with
the ordinary thermodynamical stability criterion applying
to the collisional regime, for t → +∞, where the statisti-
cal equilibrium state is the Boltzmann distribution for f
(without the bar!).

In the completely degenerate limit Λc → 0, using the
asymptotic expansion (25), we find that

ηc → +∞, εc → 1
3
, µ → 1√

2
. (65)

This can be interpreted in terms of the water-bag model
described by the DF (22). For the equation of state (24),
the velocity of sound is c2

s = ρ2/(4η2
0) = M2/(16π2η2

0) and
the stability criterion (44) gives

η0 ≤
(

M

4πk

)1/2

, i.e. µ ≤ 1√
2
. (66)

Note, parenthetically, that this criterion can also be writ-
ten as a condition on the Fermi velocity [12]: v2

F ≥
kM/(4π) since cs = vF according to the relations of
Sect. 3.3. For any value of µ, the Fermi distribution is
valid for the energy ε = εmin = 1/(6µ2) corresponding to
Λ → 0 (ground state). According to the criterion (66), it
is stable only for µ ≤ µc = 1/

√
2, i.e

εmin ≥ 1
3
. (67)

This returns the well-known stability criterion for the
water-bag model (see, e.g., [9,12]).

5.3 Criterion based on the distribution function

As shown in [9], the stability criterion associated with the
optimization problem (43) can be written in terms of the
distribution function as

1 +
k

2

∫ +∞

−∞

f ′(v)
v

dv ≤ 0. (68)

The equivalence with the criterion (44) is proved in [12].
The criterion (68) can also be obtained by investigating
the linear dynamical stability of a homogeneous solution
of the Vlasov equation [3,7,12]. Substituting equation (26)
in equation (68), we find that a homogeneous system de-
scribed by the Lynden-Bell distribution is stable if and
only if

1 − kη0Λ

(
β

2

)1/2 ∫ +∞

0

ex

√
x(1 + Λex)2

dx ≥ 0. (69)

This condition is equivalent to equation (48), as it should,
so that the previous stability analysis could have been
performed without modification by starting directly from
equation (68).

We may note at this place that the notations intro-
duced in this paper and in [12] differ from those usually
introduced in the HMF literature, e.g. [9]. This is because
we tried to draw a close parallel with the notations intro-
duced in astrophysics, e.g. [41]. However, it is not difficult
to find the relation between the two sets of parameters. In
particular, we have

ε = 4
(

U − 1
2

)
, η =

β

2
, (70)

where U and β are the energy and the inverse temperature
used in [9] (note that we prefer using dimensionless pa-
rameters constructed with all the dimensional quantities
of the problem instead of fixing some of them to specific
values). Therefore, our critical values (εc, ηc) = (1, 1) for
the Maxwell distribution correspond to (Uc, βc) = (3/4, 2)
and our critical energy εc = 1/3 for the water-bag distri-
bution corresponds to Uc = 7/12, in agreement with [9].
Note furthermore that, within our notations, the stability
criterion for polytropes (Tsallis distributions) takes a very
neat form (see Eq. (156) in [12]).

6 Application

For illustration, let us apply our results to the numerical
study of [26]. We consider an initial condition made of
a patch of uniform distribution function f0 = η0 in the
interval (−π∆θ ≤ θ ≤ π∆θ, −∆v ≤ v ≤ ∆v) and f0 = 0
outside (water-bag). The density is ρ = 2η0∆v and the
total mass is

M = η04π∆v∆θ. (71)
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The energy of a distribution which is symmetric with re-
spect to θ = 0 is given by

E =
1
2

∫
fv2dθdv − πB2

k
, (72)

where

B = − k

2π

∫ 2π

0

ρ(θ) cos θdθ, (73)

is a parameter similar to the magnetization in spin sys-
tems [12]. For the water-bag initial condition f0, the ki-
netic energy is given by

K0 =
2
3
πη0∆θ(∆v)3, (74)

and the magnetization by

B0 = −2k

π
η0∆v sin(π∆θ). (75)

It is convenient to introduce the dimensionless parameters

x = π∆θ, y = ∆v

(
8

πkM

)1/2

, b = −2πB0

kM
. (76)

Then, the dimensionless initial magnetization can be writ-
ten

b =
sin x

x
, (77)

the dimensionless energy

ε =
π2

6
y2 − 2b2, (78)

and the degeneracy parameter

µ =
1
xy

. (79)

For a given energy ε, the previous relations relate the ini-
tial magnetization b to the degeneracy parameter µ. We
note this function bε(µ). It is represented in Figure 10
for a particular value of the energy (see below). Accord-
ing to the stability diagram of Figure 7, the homogeneous
Lynden-Bell distribution is stable for any value of the de-
generacy parameter if ε ≥ 1. On the other hand, it is
always unstable (i.e., it is not a maximum entropy state)
if ε < 1/3. Finally, if 1/3 ≤ ε ≤ 1, the homogeneous
phase is stable only for µmin(ε) ≤ µ ≤ µcrit(ε) where
µmin(ε) = 1/

√
6ε. Using the curve bε(µ), we can express

this stability criterion in terms of the initial magnetiza-
tion. We first note that ∆θ ∈ [0, 1] so that 0 ≤ x ≤ π.
On the other hand, for x = π, we find that b = 0 and
ε = (πy)2/6 leading to µ = 1/

√
6ε = µmin(ε). Therefore,

if 1/3 ≤ ε ≤ 1, the homogeneous phase is stable only for
0 ≤ b ≤ bcrit(ε) where bcrit(ε) = bε(µcrit). Above the crit-
ical magnetization bcrit(ε), the homogeneous Lynden-Bell
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µmin(ε)

Fig. 10. Initial magnetization b = Mx as a function of the
degeneracy parameter µ for a given value of the energy. There
exists a critical magnetization, corresponding to µcrit(ε), above
which the homogeneous Lynden-Bell distribution is unstable.

distribution is not a maximum entropy state (it is a saddle
point).

Using the notations of [26], we have

ε = 4
(

U − 1
2

)
, b = Mx. (80)

As in [26], we fix an energy U = 0.69. In our notations, it
corresponds to ε = 0.76. From Figure 7, we find that the
critical degeneracy parameter corresponding to this en-
ergy is µcrit = 1.043.... The homogeneous phase is stable
for 0.468 ≤ µ ≤ 1.043. Using the relation between µ and
the initial magnetization b = Mx for U = 0.69 represented
in Figure 10, we conclude that the homogeneous Lynden-
Bell distribution is stable (maximum entropy state) for
Mx ≤ 0.897. Above this critical value, it is not a maximum
entropy state so it should not result from a complete vio-
lent relaxation: (i) because it is not the most mixed state
(ii) because this distribution is dynamically unstable with
respect to the Vlasov equation. The existence of a critical
magnetization is natural. Indeed, for Mx → 1, the degen-
eracy parameter µ → +∞. Since the Lynden-Bell distribu-
tion becomes “non-degenerate” in this limit, the stability
criterion is U > Uc = 3/4 as for the Maxwell-Boltzmann
distribution. Since U = 0.69 < Uc in the simulations,
there should exist a critical magnetization Mx,crit above
which the system becomes unstable. In fact, we already
know that the homogeneous Maxwell-Boltzmann distri-
bution is not always a maximum entropy state. Since this
is a particular limit of the Lynden-Bell distribution, it is
expected that the homogeneous Lynden-Bell distribution
itself is not always a maximum entropy state.

If we consider the inhomogeneous Lynden-Bell distri-
bution (9) and assume, without loss of generality, that it
is symmetric with respect to θ = 0 (chosen as the ori-
gin), the mass, the magnetization and the energy can be
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expressed as

M = η0

(
2
β

)1/2 ∫ 2π

0

I−1/2(λeβB cos θ) dθ, (81)

B = −kM

2π

∫ 2π

0
I−1/2(λeβB cos θ) cos θ dθ∫ 2π

0 I−1/2(λeβB cos θ) dθ
, (82)

E =
1
2
η0

(
2
β

)3/2 ∫ 2π

0

I1/2(λeβB cos θ) dθ − πB2

k
, (83)

where we have used Φ = B cos θ. Equations (81–83) de-
termine the equilibrium magnetization B as a function of
the temperature T or energy E for a given value of the
degeneracy parameter µ. The homogeneous state B = 0
is always a solution of these equations and we recover
equations (29, 34). On the other hand, in the dilute limit
λ → +∞, using the expansion (21), equation (82) re-
duces to the implicit equation (25) of [12] for the Maxwell-
Boltzmann distribution. To determine the critical temper-
ature at which the inhomogeneous solution appears, we
expand the equations (81, 82) for B → 0 as discussed
in [12] at a more general level. This yields

B = −kM

4π

λI ′−1/2(λ)

I−1/2(λ)
βB

[
1 + J(λ)(βB)2 + ...

]
, (84)

where

J(λ) =
1
8

+
3λ

8
I ′′

I ′
+

λ2

8
I ′′′

I ′
− λ

4
I ′

I
− λ2

4
I ′′

I
, (85)

and we have noted I for I−1/2(λ). It can be shown that
J(λ) is always negative with J(0) = 0 (Fermi) and
J(+∞) = −1/8 (Maxwell). Therefore, equation (84) will
have a solution B 
= 0 if, and only, if

−kM

4π

λI ′−1/2(λ)

I−1/2(λ)
β > 1. (86)

This is precisely the condition (48) giving the point at
which the homogeneous phase becomes unstable (i.e. be-
comes a saddle point of entropy). Therefore, in continuity
with the Maxwell-Boltzmann distribution (see, e.g., [12]),
the inhomogeneous Lynden-Bell phase appears precisely
when the homogeneous Lynden-Bell phase becomes un-
stable. This result is in fact quite general as discussed in
Section 4.3 of [12]. For the Maxwell-Boltzmann distribu-
tion, it has been shown in [12] by an explicit calculation
(solving an eigenvalue equation associated with the second
order variations of entropy) or by using the Poincaré argu-
ment for linear series of equilibria that the inhomogeneous
distribution, when it exists, is always a maximum entropy
state. By continuity, we expect in the present case that the
inhomogeneous Lynden-Bell distribution is a maximum
entropy state for the functional (4). Therefore, in the sit-
uation considered in [26], the homogeneous Lynden-Bell
distribution is a maximum entropy state for Mx < 0.897

and it becomes an unstable saddle point above this criti-
cal magnetization. For Mx > 0.897 the maximum entropy
state is an inhomogeneous Lynden-Bell distribution.

The existence of a critical initial magnetization is in-
teresting because there has been recent claims, based on
numerical simulations, that the dynamics should be dif-
ferent for small (M0) and large (M1) magnetizations [8].
Our theoretical study gives further support to that claim.
For Mx < 0.897, our study based on the statistical me-
chanics of violent relaxation predicts that the system
should tend to an homogeneous Lynden-Bell distribution
with Gaussian tails. This is confirmed by the numerical
work of Antoniazzi et al. [26] who show simulations up
to Mx = 0.7. In that case, all the results can be ex-
plained by standard statistical mechanics and kinetic the-
ory [10,12,16,23,42,43]. However, for Mx > 0.897, the
situation is different. The statistical mechanics of violent
relaxation predicts that the system should tend to an in-
homogeneous Lynden-Bell distribution (most mixed). The
occurence of a change of regime (dynamical phase tran-
sition) seems to be consistent with numerical results of
Pluchino et al. [8] who observe the appearance of struc-
tures in the µ-space for large initial magnetization (but
not for small). The fact that Mx,crit = 0.897 is close to
one is also in qualitative agreement with recent reports
of Pluchino and Rapisarda [44]. When the system be-
comes spatially inhomogeneous or involves phase space
structures, the statistical mechanics and kinetic theory
become complicated and may lead to anomalies as men-
tioned in [17]. For Mx > 0.897, since the dynamics be-
comes more complex, it is possible that the system will
not mix well during violent relaxation so that the inho-
mogeneous Lynden-Bell distribution (most mixed state)
will not be achieved in practice. This is in fact what is
observed. Indeed, for Mx = 1, the degeneracy parameter
µ → +∞ so that the Lynden-Bell distribution coincides
with the Maxwell-Boltzmann distribution (non degener-
ate limit). Now, for Mx = 1 the QSS is not a Gaussian as
shown in [6]. Thus, we expect that for Mx > 0.897 the sys-
tem will be trapped in an incompletely mixed state (which
may be spatially homogeneous or weakly inhomogeneous).
This is a stable stationary solution of the Vlasov equa-
tion but different from the Lynden-Bell distribution due
to incomplete relaxation. Numerical simulations [6] show
that, in certain cases, this state can be fitted by a Tsal-
lis distribution. The Tsallis distributions form a particular
one-parameter family of stationary solutions of the Vlasov
equation (indexed by q) known as stellar polytropes in
astrophysics [33,37]. However, there is absolutely no fun-
damental reason why the Tsallis distributions should be
selected in a universal manner as a result of incomplete
violent relaxation [25,33]. Other fits can work as well or
even better (see, e.g., [11]) depending on the situation.
In fact, any distribution function of the form f = f(ε)
where ε = v2/2 + Φ is the individual energy (Φ = 0 for
a homogeneous system) is a steady state of the Vlasov
equation. Furthermore, if f(ε) maximizes an H-function
H = − ∫

C(f)dθdv (where C is convex) at fixed mass M
and energy E, then it is nonlinearly dynamically stable
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with respect to the Vlasov equation [12]. Tsallis distribu-
tions associated with C(f) = (1/(q − 1))(f q − f) are a
special case of distribution functions enjoying these prop-
erties but infinitely many other distributions can be con-
sidered as well. The non-universality of the distribution
function of the QSS, depending on the dynamics, is fur-
ther discussed in the Conclusion and in [25]. Although the
Tsallis distributions have not a fundamental justification
in the context of incomplete violent relaxation, an inter-
est of these distributions is their mathematical simplicity
and this is why it is convenient to try this fit first. Such
fits have indeed been considered in [6] and the best fit
is obtained for q∗ = 73. It gives a reasonable, but not
perfect, agreement with observations. As said previously,
there is no fundamental reason why the QSS should be
precisely described by a Tsallis distribution, so the devi-
ation between observation and fit should not cause sur-
prise. In our opinion, the detailed structure of the QSS
is unpredictable in case of incomplete violent relaxation
(see Conclusion and [25]). This unpredictability is already
present in the Tsallis q parameter which is a free param-
eter which has to be adjusted to the situation in order to
fit the results at best. More generally, we argue that the
pdf of the QSS should not always be a Tsallis distribu-
tion, even in case of incomplete relaxation (i.e. when the
Lynden-Bell prediction fails). More general distributions
could arise [25,33,37]. However, the Tsallis formalism is
nice because it provides simple analytical expressions of
non-standard distributions (with one single parameter q)
that can be handled easily (hence its popularity!). Fur-
thermore, an effective kinetic theory, based on generalized
Fokker-Planck equations, can be developed in consistency
with these distributions [45,46]. Although more general
kinetic theories can be developed as well for other equi-
librium distributions associated with other forms of “gen-
eralized entropies” [33,47], the q-Fokker-Planck equations
associated with the Tsallis entropy provide a good ba-
sis for practical studies (due, again, to their simplicity)
and they may be representative of more general situa-
tions. As suggested in [23,31,47], these effective kinetic
theories could be useful precisely when standard kinetic

3 The nonlinear dynamical stability of the homogeneous
Tsallis distributions (polytropes) can be studied using the re-
sults of [12] (independently, an equivalent calculation has been
made in parallel in [11]). The q∗ of [6] is related to our q in [12]
by 1− q∗ = q−1 hence q = 2− q∗ = −5. This corresponds to a
polytropic index n = 1/2+1/(q−1) = 1/3 or γ = 1+1/n = 4.
Our study in [12] shows that such DF are nonlinearly dynam-
ically stable with respect to the Vlasov equation (they maxi-
mize the Tsallis H-function [37] at fixed mass and energy) if
ε > εcrit = 1/γ = 1/4 hence U > 9/16 = 0.5625 which is
fulfilled for U = 0.69. By contrast, the homogeneous Maxwell-
Boltzmann distribution (q = 1) is stable for U > 3/4 which is
not fulfilled. Therefore, the homogeneous Tsallis distribution
with q∗ = 7 is stable while the homogeneous Lynden-Bell dis-
tribution (equivalent to the Maxwell-Boltzmann distribution
in the dilute limit Mx = 1, µ → +∞) is unstable. Note, finally,
that the critical energy εcrit = 1/γ obtained in [12] is equiva-
lent to the critical energy Ucrit = 3/4 + (q∗ − 1)/(2(5 − 3q∗))
obtained in [11] but expressed in a simpler form.

theories break down or become complicated [17] due to the
emergence of structures in µ-space, non-ergodicity, mem-
ory effects, finite N effects etc. Of course, when standard
kinetic theory applies [10,12,16,23,42,43], they are not
necessary. A plausible scenario is that standard statistical
mechanics (based, however, on Lynden-Bell’s approach)
applies for Mx < 0.897 and that anomalies appear for
Mx > 0.897 because the evolution is non-ergodic and in-
volves phase-space structures, memory effects etc. It is in
this regime that Tsallis effective thermodynamics (or more
general approaches [33,47]) could be applied. Therefore,
our study tends to reconcile two groups of researchers by
suggesting that they study two different dynamics, be-
low [26] and above [8] the critical initial magnetization
Mx = 0.897 (for U = 0.69). This is consistent with our
general claim [23,25,31,33,37,47] that the Tsallis formal-
ism can be useful in some situations even if it provides, in
our opinion, only an effective description of complex sys-
tems. Things are more complex than often said and they
deserve a detailed and careful discussion.

7 Conclusion

In this paper, we have investigated the stability of the
spatially homogeneous Lynden-Bell distribution (26) by
determining whether it corresponds to a maximum of the
functional (4) at fixed mass and energy. This maximiza-
tion problem provides a condition of thermodynamical
stability for the process of violent relaxation (in which
case S is interpreted as an entropy) as well as a condi-
tion of nonlinear dynamical stability with respect to the
Vlasov equation (in which case S is interpreted as a gener-
alized H-function in the sense of [36]). The thermodynam-
ical stability condition ensures that the system is the most
mixed state with respect to microscopic (fine-grained) per-
turbations. The nonlinear dynamical stability condition
ensures that the coarse-grained distribution is robust for
the collisionless dynamics against macroscopic perturba-
tions. It is particularly interesting to note that the con-
ditions of thermodynamical (in Lynden-Bell’s sense) and
nonlinear dynamical stability coincide. We have obtained
the expression of the critical energy and critical tempera-
ture above which the homogeneous phase is stable as a
function of the degeneracy parameter. The known sta-
bility criteria corresponding to the Maxwell-Boltzmann
distribution and the water-bag distribution are recovered
as particular limits of our study. Furthermore, a critical
point µ∗ = 0.68786... has been found below which the ho-
mogeneous phase is always stable, whatever the value of
energy and temperature. When the homogeneous Lynden-
Bell distribution is unstable (saddle point of entropy) it
cannot be achieved as a result of violent relaxation. In that
case, the maximum entropy state is an inhomogeneous
Lynden-Bell distribution. For a given value of energy, the
transition should occur for a sufficiently large value of the
initial magnetization (Mx > 0.897 for U = 0.69). We
have suggested that the relaxation becomes incomplete
for Mx > 0.897 so that the Lynden-Bell prediction fails
(this should be checked numerically but this seems to be
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the case at least for Mx = 1 [6]). In that case, other distri-
butions, that are stable stationary solutions of the Vlasov
equation, can emerge. In some situations, the QSS can be
fitted by the Tsallis distribution (polytrope). This provide
a simple characterisation of the QSS but this fit is not ex-
pected to be universal or fundamental. The fact that the
Lynden-Bell prediction breaks down is the mark of a lack
of ergodicity and a lack of efficient mixing. Dynamical
anomalies then appear and the Tsallis formalism could be
used in that context (as an effective description) as con-
sidered in [6]. Thus, having evidenced a new dynamical
phase transition, our study may reconcile two groups of
researchers by showing that they describe in fact differ-
ent dynamical processes: for Mx < 0.897 the dynamics
is ergodic and ordinary statistical mechanics (Lynden-
Bell [27]) applies and for Mx > 0.897 the dynamics is non-
ergodic and effective generalized thermodynamics, such as
Tsallis [24] approach (or more general [33,47] approaches)
could be tried.

We would like to conclude this study by emphasizing
the limitations of the Lynden-Bell statistical theory at a
general level. First of all, the distribution function (9) is
only valid when the initial condition takes two values 0
and η0. Therefore, it is not expected to apply to any ini-
tial condition. For more complex initial conditions, the
Lynden-Bell prediction is a superposition of Fermi-Dirac
distributions for all the phase levels η. Therefore, depend-
ing on the initial conditions, the Lynden-Bell distribution
can take a wide diversity of forms given by the general for-
mula (12); this is similar to a sort of superstatistics [31]
where χ(η) is fixed by the initial condition. The Fermi-
Dirac distribution (9) is just a particular case of this gen-
eral formula for two levels. It is indeed important to stress
that the prediction of Lynden-Bell depends on the details
of the initial condition, not only on the robust conserved
quantities E and M . This is at variance with usual statis-
tical mechanics where only the robust constraints (energy,
mass, ...) matter. This is due to the existence of Casimir
constraints in the Vlasov dynamics that act as hidden con-
straints [31]. When we consider realistic initial conditions,
we enter into complications because: (1) we need to dis-
cretize the initial condition into several levels and then
relate the Lagrange multipliers χ(η) to the hypervolume
γ(η) of each level [28,31]. This makes the application of
the Lynden-Bell theory technically complicated and heavy
because it involves a lot of control parameters [48]. (2) we
do not always know at which scale we must discretize the
initial condition and different discretizations may lead to
different results as discussed in [49] (p. 284) and in [50].
(3) in addition, there is a debate to decide whether all the
Casimirs are conserved (microscopically) or if certain are
altered by non-ideal effects during the dynamics so that
a prior distribution should be introduced instead (this
remark applies particularly to realistic systems such as
2D turbulence [33,51–54]). The simple two-levels situa-
tion considered in Antoniazzi et al. [26] is not subject to
such difficulties and criticisms.

On the other hand, the approach of Lynden-Bell as-
sumes that the system mixes well so that the hypothesis

of ergodicity4 which sustains his statistical theory (max-
imization of the entropy) is fulfilled. Again, this is not
expected to be general. Several cases of incomplete violent
relaxation have been identified in stellar dynamics and 2D
turbulence (see some references in [25]). In such cases, the
QSS is not exactly described by the Lynden-Bell distri-
bution but it is nevertheless a stable stationary solution
of the Vlasov equation. Therefore, distributions different
from (9) can emerge in case of incomplete violent relax-
ation. This is the case for example in the plasma experi-
ment of Huang and Driscoll [55] in 2D turbulence where
it has been observed that the QSS is not perfectly well-
described by the Lynden-Bell theory. In particular, the
density drops to zero at a finite distance instead of decay-
ing smoothly. Boghosian [56] has interpreted this result in
terms of Tsallis non-extensive thermodynamics. Alterna-
tively, the deviation from the Lynden-Bell prediction has
been interpreted in [48] as a result of an incomplete vi-
olent relaxation (non-ergodicity) and a lack of mixing in
the core and the halo of the “vortex”. In this interpreta-
tion, the QSS is viewed as a particular stable stationary
solution of the 2D Euler equation which is not the most
mixed state. As we understand, the proposal of Tsallis is
to introduce an entropy which can take into account non-
ergodic behaviours5. Indeed, generalized entropies make
sense only when the system is non ergodic. If the sys-
tem mixes well, as in the situations considered in [26],
the Lynden-Bell theory is the relevant one [25]. Unfortu-
nately, we do not know a priori whether the system will
mix well or not; this depends on the dynamics and on
the route to equilibrium [25]. We only know a posteriori
if the Lynden-Bell prediction has worked or failed (like
in, e.g., [55]). The possibility that non-ergodic behaviours
could be described by a generalized form of entropy is
an attractive idea. However, we do not believe that com-
plicated non-ergodic behaviours associated with the pro-
cess of incomplete violent relaxation can be encapsulated
in a simple functional such as the q-entropy proposed by
Tsallis. When the system does not mix well we can have
a wide variety of QSS. This is because the Vlasov (or 2D
Euler) equation admits an infinite number of steady states
and the system can be trapped in one of them. A kinetic
theory of violent relaxation, as initiated in [28,57], is then
necessary to account for incomplete relaxation (see [25]).

4 It should be clear that, in this paper, we are talking about
the ergodicity with respect to the collisionless mixing in rela-
tion with the process of violent relaxation, not the ergodicity
with respect to the collisional evolution. Collisional relaxation
(due to granularities and finite N effects) is not considered here
because it occurs on very long timescales for N � 1 and does
not account for the structure of the QSS [12].

5 In this respect, we should stress that the proper form of
Tsallis entropy for the process of violent relaxation is the one
given in [25], expressed in terms of ρ(θ, v, η). In the two-levels
approximation, it reduces to a q-Fermi-Dirac type entropy [48].
Within this interpretation, the index q would be a measure of
mixing. For q = 1 (efficient mixing), we recover the Lynden-
Bell theory (see [25]).
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In conclusion, for these two reasons: (1) dependence on
the detailed structure of the initial conditions (through the
Casimirs constraints); (2) incomplete violent relaxation
(non ergodicity), the QSS is not expected to be described
by a “universal” distribution such as (26), or even (12).
However, as claimed long ago in [48], the Lynden-Bell
theory is the only one to make a prediction of the QSS
without ad hoc parameter. It is usually observed that the
Lynden-Bell prediction provides a fair description of the
QSS in many cases even if there can exist discrepancies
that are more or less pronounced due to incomplete relax-
ation. Thus, the Lynden-Bell distribution gives the ten-
dency to which state the system should tend as a result of
mixing. However, during the route to equilibrium, mixing
may not be sufficient and the system can be frozen in a
stationary solution of the Vlasov equation which is not the
most mixed state. This process of incomplete relaxation
is beautifully described by Binney and Tremaine [34],
pp. 266–267, using an analogy with the structure of the
Mississippi river. On the other hand, Tsallis distributions
form just a particular one-parameter family of stationary
solutions of the Vlasov equation (analogous to stellar poly-
tropes) that can sometimes be used as convenient fits, in
case of incomplete violent relaxation, due to their simple
mathematical expression. However, these fits should not
work in a universal manner and other fits can work as well,
or even better.

There are still debates and controversies about the fact
that the collisionless evolution of the HMF model is ade-
quately described by the Vlasov equation. Indeed, the au-
thors of [6,8,15] describe the QSS in terms of Tsallis gen-
eralized thermodynamics based on the N -body system,
not in terms of the Lynden-Bell thermodynamics based
on the Vlasov equation. The Vlasov description is clas-
sical in plasma physics and astrophysics (as well as in
point vortex dynamics and 2D turbulence where it has
the form of the Euler equation [22]) to describe the evo-
lution of the system during the regime where “collisions”
are negligible. In that case, there are no correlations be-
tween the particles and the N -body distribution function
is a product of N one-body distribution functions. Us-
ing this property to close the BBGKY hierarchy steming
from the Liouville equation, one obtains the Vlasov equa-
tion [23]. For a system with weak long-range interactions,
it can be shown that this mean field description is correct
in a proper thermodynamic limit N → +∞6. A math-
ematically rigorous derivation of the Vlasov equation is
given by Braun and Hepp [59]. However, justifying the
Vlasov equation for the collisionless regime of the HMF
model is not the end of the story. As noted in [25], the
Vlasov equation coupled to a long-range force can have a
very complicated behaviour (this is similar to the Euler

6 As shown in [12,16,23], the Vlasov equation also describes
the collisional relaxation at order 1/N . This is because the
Lenard-Balescu collision term cancels out for 1D systems (this
property is known for a long time in plasma physics [58]). Col-
lisions therefore manifest themselves on a timescale larger than
N . For the HMF model, numerical simulations show that the
relaxation time scales as N1.7 [9].

equation in 2D turbulence [22]). Therefore, the anoma-
lies (non-ergodicity, phase space structures, ...) observed
by [6,8,15] in their N -body simulations would probably
persist and be observed by directly solving the Vlasov
equation. This would describe the N → +∞ limit of the
model. This comparative study (N -body Hamilton equa-
tions versus Vlasov equation) has not yet been done for
the HMF model but it would be an interesting step to
reconcile different approaches. It would also clearly show
whether the “anomalies” reported in [6,8,15] are due to
finite N effects or if they persist in the thermodynamic
limit N → +∞.

Note finaly that, since the Lynden-Bell distribution (9)
is similar to the Fermi-Dirac statistics in quantum me-
chanics, the results of this paper also describe the (ordi-
nary) statistical mechanics of a system of N fermions on a
ring interacting via a cosine potential; this could be called
the fermionic HMF model. In that context, the maximum
value of the distribution function is η0 = g/h where h is
the Planck constant and g = 2s + 1 the spin multiplic-
ity of the quantum states. In this quantum context, η0 is
fixed by the Pauli exclusion principle (see the analogous
situation for self-gravitating fermions in [60]).

I acknowledge stimulating discussions with D. Lynden-Bell and
C. Tsallis.
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